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Time allowed Three and a half hours.

Instructions • Full written solutions - not just answers - are

required, with complete proofs of any assertions

you may make. Marks awarded will depend on the

clarity of your mathematical presentation. Work

in rough first, and then draft your final version

carefully before writing up your best attempt.

Do not hand in rough work.

• One complete solution will gain far more credit

than several unfinished attempts. It is more

important to complete a small number of questions

than to try all five problems.

• Each question carries 10 marks.

• The use of rulers and compasses is allowed, but

calculators and protractors are forbidden.

• Start each question on a fresh sheet of paper. Write

on one side of the paper only. On each sheet of

working write the number of the question in the

top left hand corner and your name, initials and

school in the top right hand corner.

• Complete the cover sheet provided and attach it to

the front of your script, followed by the questions

1,2,3,4,5 in order.

• Staple all the pages neatly together in the top left

hand corner.

Do not turn over until told to do so.
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1. Given that

34! = 295 232 799 cd9 604 140 847 618 609 643 5ab 000 000,

determine the digits a, b, c, d.

2. The triangle ABC, where AB < AC, has circumcircle S. The

perpendicular from A to BC meets S again at P . The point X lies on

the line segment AC, and BX meets S again at Q.

Show that BX = CX if and only if PQ is a diameter of S.

3. Let x, y, z be positive real numbers such that x2 + y2 + z2 = 1.

Prove that

x2yz + xy2z + xyz2
≤

1

3
.

4. Let m and n be integers greater than 1. Consider an m×n rectangular

grid of points in the plane. Some k of these points are coloured red

in such a way that no three red points are the vertices of a right-

angled triangle two of whose sides are parallel to the sides of the grid.

Determine the greatest possible value of k.

5. Find all solutions in positive integers a, b, c to the equation

a! b! = a! + b! + c!


